Click here to Download
# # DCN_AlexNet.moo # # This model was designed to conform to the implementation of AlexNet # published for the Caffe Deep Learning Framework. # mod_type caffe_net sscale 0.1 (deg/pix) # Number of degrees (of visual angle) per pixel # thus, 1 cyc/deg ~= 1 cyc per conv1 kernel width tscale 0.001 (s/frame) # Number of seconds per stimulus frame xn 227 (pix) # yn 227 (pix) # tn 1 (frames) # weight_filename data/anw.txt # Weights based on Caffe's AlexNet version stim_depth 3 # For R,G,B stimuli
name conv1 type Convolution bottom data top conv1
num_output 96 kernel_size 11 stride 4 outdim 10 96 55 55
name relu1 type ReLU bottom conv1 top relu1 outdim 10 96 55 55
name pool1 type Pooling bottom relu1 top pool1
pool MAX kernel_size 3 stride 2 outdim 10 96 27 27
name norm1 type LRN bottom pool1 top norm1
local_size 5 alpha 0.0001 beta 0.75 outdim 10 96 27 27
name conv2 type Convolution bottom norm1 top conv2
num_output 256 pad 2 kernel_size 5 group 2 outdim 10 256 27 27
name relu2 type ReLU bottom conv2 top relu2 outdim 10 256 27 27
name pool2 type Pooling bottom relu2 top pool2
pool MAX kernel_size 3 stride 2 outdim 10 256 13 13
name norm2 type LRN bottom pool2 top norm2
local_size 5 alpha 0.0001 beta 0.75 outdim 10 256 13 13
name conv3 type Convolution bottom norm2 top conv3
num_output 384 pad 1 kernel_size 3 outdim 10 384 13 13
name relu3 type ReLU bottom conv3 top relu3 outdim 10 384 13 13
name conv4 type Convolution bottom relu3 top conv4
num_output 384 pad 1 kernel_size 3 group 2 outdim 10 384 13 13
name relu4 type ReLU bottom conv4 top relu4
name conv5 type Convolution bottom relu4 top conv5
num_output 256 pad 1 kernel_size 3 group 2
name relu5 type ReLU bottom conv5 top relu5
name pool5 type Pooling bottom relu5 top pool5
pool MAX kernel_size 3 stride 2
name fc6 type InnerProduct bottom pool5 top fc6
num_output 4096
name relu6 type ReLU bottom fc6 top relu6
name fc7 type InnerProduct bottom relu6 top fc7
num_output 4096
name relu7 type ReLU bottom fc7 top relu7
name fc8 type InnerProduct bottom relu7 top fc8
num_output 1000
name prob type Softmax bottom fc8 top prob